Generative Query Expansion with Multilingual LLMs for Cross-Lingual Information Retrieval (2511.19325v1)
Abstract: Query expansion is the reformulation of a user query by adding semantically related information, and is an essential component of monolingual and cross-lingual information retrieval used to ensure that relevant documents are not missed. Recently, multilingual LLMs (mLLMs) have shifted query expansion from semantic augmentation with synonyms and related words to pseudo-document generation. Pseudo-documents both introduce additional relevant terms and bridge the gap between short queries and long documents, which is particularly beneficial in dense retrieval. This study evaluates recent mLLMs and fine-tuned variants across several generative expansion strategies to identify factors that drive cross-lingual retrieval performance. Results show that query length largely determines which prompting technique is effective, and that more elaborate prompts often do not yield further gains. Substantial linguistic disparities persist: cross-lingual query expansion can produce the largest improvements for languages with the weakest baselines, yet retrieval is especially poor between languages written in different scripts. Fine-tuning is found to lead to performance gains only when the training and test data are of similar format. These outcomes underline the need for more balanced multilingual and cross-lingual training and evaluation resources.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.