Papers
Topics
Authors
Recent
2000 character limit reached

Local Entropy Search over Descent Sequences for Bayesian Optimization (2511.19241v1)

Published 24 Nov 2025 in cs.LG, cs.AI, and stat.ML

Abstract: Searching large and complex design spaces for a global optimum can be infeasible and unnecessary. A practical alternative is to iteratively refine the neighborhood of an initial design using local optimization methods such as gradient descent. We propose local entropy search (LES), a Bayesian optimization paradigm that explicitly targets the solutions reachable by the descent sequences of iterative optimizers. The algorithm propagates the posterior belief over the objective through the optimizer, resulting in a probability distribution over descent sequences. It then selects the next evaluation by maximizing mutual information with that distribution, using a combination of analytic entropy calculations and Monte-Carlo sampling of descent sequences. Empirical results on high-complexity synthetic objectives and benchmark problems show that LES achieves strong sample efficiency compared to existing local and global Bayesian optimization methods.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.