Papers
Topics
Authors
Recent
2000 character limit reached

Masked Diffusion Models are Secretly Learned-Order Autoregressive Models (2511.19152v1)

Published 24 Nov 2025 in cs.LG and stat.ML

Abstract: Masked Diffusion Models (MDMs) have emerged as one of the most promising paradigms for generative modeling over discrete domains. It is known that MDMs effectively train to decode tokens in a random order, and that this ordering has significant performance implications in practice. This observation raises a fundamental question: can we design a training framework that optimizes for a favorable decoding order? We answer this in the affirmative, showing that the continuous-time variational objective of MDMs, when equipped with multivariate noise schedules, can identify and optimize for a decoding order during training. We establish a direct correspondence between decoding order and the multivariate noise schedule and show that this setting breaks invariance of the MDM objective to the noise schedule. Furthermore, we prove that the MDM objective decomposes precisely into a weighted auto-regressive losses over these orders, which establishes them as auto-regressive models with learnable orders.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.