Papers
Topics
Authors
Recent
2000 character limit reached

Eliciting Chain-of-Thought in Base LLMs via Gradient-Based Representation Optimization (2511.19131v1)

Published 24 Nov 2025 in cs.CL

Abstract: Chain-of-Thought (CoT) reasoning is a critical capability for LLMs, enabling them to tackle com- plex multi-step tasks. While base LLMs, pre-trained on general text corpora, often struggle with reasoning due to a lack of specialized training, recent studies reveal their latent reason- ing potential tied to hidden states. However, existing hidden state manipulation methods, such as linear activation steering, suffer from limitations due to their rigid and unconstrained nature, often leading to distribution shifts and degraded text quality. In this work, we propose a novel approach for elic- iting CoT reasoning from base LLMs through hidden state manipulation grounded in probabilistic conditional generation. By reformulating the challenge as an optimization problem with a balanced likelihood and prior regularization framework, our method guides hidden states toward reasoning-oriented trajectories while preserving linguistic coherence. Extensive evaluations across mathematical, commonsense, and logical reasoning benchmarks demonstrate that our approach con- sistently outperforms existing steering methods, offering a theoretically principled and effective solution for enhancing reasoning capabilities in base LLMs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 25 likes about this paper.