Papers
Topics
Authors
Recent
2000 character limit reached

FastForward Pruning: Efficient LLM Pruning via Single-Step Reinforcement Learning (2511.18977v1)

Published 24 Nov 2025 in cs.LG and cs.AI

Abstract: Pruning is an effective method for compressing LLMs, but finding an optimal, non-uniform layer-wise sparsity allocation remains a key challenge. While heuristic methods are fast but yield suboptimal performance, more powerful search-based approaches like Reinforcement Learning are often hindered by prohibitive computational costs on large-scale models. To overcome this efficiency barrier, we propose FastForward Pruning. Its core is a decoupled, single-step RL framework that separates policy optimization from the complex budget satisfaction problem. Such a decoupling is crucial for efficiently searching the vast policy space of LLMs. This curriculum-based strategy begins with low-cost, simple tasks and gradually increases in complexity, significantly reducing the search's computational overhead. Evaluated on the LLaMA, Mistral, and OPT model families, our framework discovers pruning policies that achieve superior performance over strong heuristic baselines. Crucially, when compared to other search-based algorithms, our method achieves competitive or superior results at a fraction of the computational cost, demonstrating a clear advantage in search efficiency.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.