Papers
Topics
Authors
Recent
2000 character limit reached

Defending Large Language Models Against Jailbreak Exploits with Responsible AI Considerations (2511.18933v1)

Published 24 Nov 2025 in cs.CR and cs.AI

Abstract: LLMs remain susceptible to jailbreak exploits that bypass safety filters and induce harmful or unethical behavior. This work presents a systematic taxonomy of existing jailbreak defenses across prompt-level, model-level, and training-time interventions, followed by three proposed defense strategies. First, a Prompt-Level Defense Framework detects and neutralizes adversarial inputs through sanitization, paraphrasing, and adaptive system guarding. Second, a Logit-Based Steering Defense reinforces refusal behavior through inference-time vector steering in safety-sensitive layers. Third, a Domain-Specific Agent Defense employs the MetaGPT framework to enforce structured, role-based collaboration and domain adherence. Experiments on benchmark datasets show substantial reductions in attack success rate, achieving full mitigation under the agent-based defense. Overall, this study highlights how jailbreaks pose a significant security threat to LLMs and identifies key intervention points for prevention, while noting that defense strategies often involve trade-offs between safety, performance, and scalability. Code is available at: https://github.com/Kuro0911/CS5446-Project

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.