Papers
Topics
Authors
Recent
2000 character limit reached

VADE: Variance-Aware Dynamic Sampling via Online Sample-Level Difficulty Estimation for Multimodal RL

Published 24 Nov 2025 in cs.LG and cs.AI | (2511.18902v1)

Abstract: Group-based policy optimization methods like GRPO and GSPO have become standard for training multimodal models, leveraging group-wise rollouts and relative advantage estimation. However, they suffer from a critical \emph{gradient vanishing} problem when all responses within a group receive identical rewards, causing advantage estimates to collapse and training signals to diminish. Existing attempts to mitigate this issue fall into two paradigms: filtering-based and sampling-based methods. Filtering-based methods first generate rollouts broadly and then retroactively filter out uninformative groups, leading to substantial computational overhead. Sampling-based methods proactively select effective samples before rollout but rely on static criteria or prior dataset knowledge, lacking real-time adaptability. To address these issues, we propose \textbf{VADE}, a \textbf{V}ariance-\textbf{A}ware \textbf{D}ynamic sampling framework via online sample-level difficulty \textbf{E}stimation. Our framework integrates three key components: online sample-level difficulty estimation using Beta distributions, a Thompson sampler that maximizes information gain through the estimated correctness probability, and a two-scale prior decay mechanism that maintains robust estimation under policy evolution. This three components design enables VADE to dynamically select the most informative samples, thereby amplifying training signals while eliminating extra rollout costs. Extensive experiments on multimodal reasoning benchmarks show that VADE consistently outperforms strong baselines in both performance and sample efficiency, while achieving a dramatic reduction in computational overhead. More importantly, our framework can serves as a plug-and-play component to be seamlessly integrated into existing group-based RL algorithms. Code and models are available at https://VADE-RL.github.io.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.