Time Travel: LLM-Assisted Semantic Behavior Localization with Git Bisect (2511.18854v1)
Abstract: We present a novel framework that integrates LLMs into the Git bisect process for semantic fault localization. Traditional bisect assumes deterministic predicates and binary failure states assumptions often violated in modern software development due to flaky tests, nonmonotonic regressions, and semantic divergence from upstream repositories. Our system augments bisect traversal with structured chain of thought reasoning, enabling commit by commit analysis under noisy conditions. We evaluate multiple open source and proprietary LLMs for their suitability and fine tune DeepSeekCoderV2 using QLoRA on a curated dataset of semantically labeled diffs. We adopt a weak supervision workflow to reduce annotation overhead, incorporating human in the loop corrections and self consistency filtering. Experiments across multiple open source projects show a 6.4 point absolute gain in success rate from 74.2 to 80.6 percent, leading to significantly fewer failed traversals and by experiment up to 2x reduction in average bisect time. We conclude with discussions on temporal reasoning, prompt design, and finetuning strategies tailored for commit level behavior analysis.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.