Papers
Topics
Authors
Recent
Search
2000 character limit reached

Auto-ML Graph Neural Network Hypermodels for Outcome Prediction in Event-Sequence Data

Published 24 Nov 2025 in cs.LG | (2511.18835v1)

Abstract: This paper introduces HGNN(O), an AutoML GNN hypermodel framework for outcome prediction on event-sequence data. Building on our earlier work on graph convolutional network hypermodels, HGNN(O) extends four architectures-One Level, Two Level, Two Level Pseudo Embedding, and Two Level Embedding-across six canonical GNN operators. A self-tuning mechanism based on Bayesian optimization with pruning and early stopping enables efficient adaptation over architectures and hyperparameters without manual configuration. Empirical evaluation on both balanced and imbalanced event logs shows that HGNN(O) achieves accuracy exceeding 0.98 on the Traffic Fines dataset and weighted F1 scores up to 0.86 on the Patients dataset without explicit imbalance handling. These results demonstrate that the proposed AutoML-GNN approach provides a robust and generalizable benchmark for outcome prediction in complex event-sequence data.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.