CoD: A Diffusion Foundation Model for Image Compression (2511.18706v1)
Abstract: Existing diffusion codecs typically build on text-to-image diffusion foundation models like Stable Diffusion. However, text conditioning is suboptimal from a compression perspective, hindering the potential of downstream diffusion codecs, particularly at ultra-low bitrates. To address it, we introduce \textbf{CoD}, the first \textbf{Co}mpression-oriented \textbf{D}iffusion foundation model, trained from scratch to enable end-to-end optimization of both compression and generation. CoD is not a fixed codec but a general foundation model designed for various diffusion-based codecs. It offers several advantages: \textbf{High compression efficiency}, replacing Stable Diffusion with CoD in downstream codecs like DiffC achieves SOTA results, especially at ultra-low bitrates (e.g., 0.0039 bpp); \textbf{Low-cost and reproducible training}, 300$\times$ faster training than Stable Diffusion ($\sim$ 20 vs. $\sim$ 6,250 A100 GPU days) on entirely open image-only datasets; \textbf{Providing new insights}, e.g., We find pixel-space diffusion can achieve VTM-level PSNR with high perceptual quality and can outperform GAN-based codecs using fewer parameters. We hope CoD lays the foundation for future diffusion codec research. Codes will be released.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.