Papers
Topics
Authors
Recent
2000 character limit reached

EVCC: Enhanced Vision Transformer-ConvNeXt-CoAtNet Fusion for Classification (2511.18691v1)

Published 24 Nov 2025 in cs.CV

Abstract: Hybrid vision architectures combining Transformers and CNNs have significantly advanced image classification, but they usually do so at significant computational cost. We introduce EVCC (Enhanced Vision Transformer-ConvNeXt-CoAtNet), a novel multi-branch architecture integrating the Vision Transformer, lightweight ConvNeXt, and CoAtNet through key innovations: (1) adaptive token pruning with information preservation, (2) gated bidirectional cross-attention for enhanced feature refinement, (3) auxiliary classification heads for multi-task learning, and (4) a dynamic router gate employing context-aware confidence-driven weighting. Experiments across the CIFAR-100, Tobacco3482, CelebA, and Brain Cancer datasets demonstrate EVCC's superiority over powerful models like DeiT-Base, MaxViT-Base, and CrossViT-Base by consistently achieving state-of-the-art accuracy with improvements of up to 2 percentage points, while reducing FLOPs by 25 to 35%. Our adaptive architecture adjusts computational demands to deployment needs by dynamically reducing token count, efficiently balancing the accuracy-efficiency trade-off while combining global context, local details, and hierarchical features for real-world applications. The source code of our implementation is available at https://anonymous.4open.science/r/EVCC.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.