EVCC: Enhanced Vision Transformer-ConvNeXt-CoAtNet Fusion for Classification (2511.18691v1)
Abstract: Hybrid vision architectures combining Transformers and CNNs have significantly advanced image classification, but they usually do so at significant computational cost. We introduce EVCC (Enhanced Vision Transformer-ConvNeXt-CoAtNet), a novel multi-branch architecture integrating the Vision Transformer, lightweight ConvNeXt, and CoAtNet through key innovations: (1) adaptive token pruning with information preservation, (2) gated bidirectional cross-attention for enhanced feature refinement, (3) auxiliary classification heads for multi-task learning, and (4) a dynamic router gate employing context-aware confidence-driven weighting. Experiments across the CIFAR-100, Tobacco3482, CelebA, and Brain Cancer datasets demonstrate EVCC's superiority over powerful models like DeiT-Base, MaxViT-Base, and CrossViT-Base by consistently achieving state-of-the-art accuracy with improvements of up to 2 percentage points, while reducing FLOPs by 25 to 35%. Our adaptive architecture adjusts computational demands to deployment needs by dynamically reducing token count, efficiently balancing the accuracy-efficiency trade-off while combining global context, local details, and hierarchical features for real-world applications. The source code of our implementation is available at https://anonymous.4open.science/r/EVCC.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.