Papers
Topics
Authors
Recent
2000 character limit reached

Low-Rank GEMM: Efficient Matrix Multiplication via Low-Rank Approximation with FP8 Acceleration (2511.18674v1)

Published 24 Nov 2025 in cs.PF, cs.AI, cs.DC, and cs.LG

Abstract: Large matrix multiplication is a cornerstone of modern machine learning workloads, yet traditional approaches suffer from cubic computational complexity (e.g., $\mathcal{O}(n3)$ for a matrix of size $n\times n$). We present Low-Rank GEMM, a novel approach that leverages low-rank matrix approximations to achieve sub-quadratic complexity while maintaining hardware-accelerated performance through FP8 precision and intelligent kernel selection. On a NVIDIA RTX 4090, our implementation achieves up to 378 TFLOPS on matrices up to $N=20480$, providing 75\% memory savings and $7.8\times$ speedup over PyTorch FP32 for large matrices. The system automatically adapts to hardware capabilities, selecting optimal decomposition methods (SVD, randomized SVD) and precision levels based on matrix characteristics and available accelerators. Comprehensive benchmarking on NVIDIA RTX 4090 demonstrates that Low-Rank GEMM becomes the fastest approach for matrices $N\geq10240$, surpassing traditional cuBLAS implementations through memory bandwidth optimization rather than computational shortcuts.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.