Deterministic Continuous Replacement: Fast and Stable Module Replacement in Pretrained Transformers (2511.18670v1)
Abstract: Replacing modules in pretrained models, especially swapping quadratic self-attention for efficient attention alternatives, poses a hard optimization problem: cold-start reinitialization destabilizes frozen backbones. We isolate this core stability challenge in a controlled study. Deterministic Continuous Replacement (DCR) blends teacher and student outputs with a deterministic, annealed weight. Theoretically, DCR eliminates gate-induced gradient variance inherent to stochastic replacement. In a single-seed study, DCR attains faster convergence and stronger alignment than stochastic gating and distillation baselines on controlled attention replacement, establishing a foundation for heterogeneous operator swaps.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.