Autoencoder for Position-Assisted Beam Prediction in mmWave ISAC Systems (2511.18594v1)
Abstract: Integrated sensing and communication and millimeter wave (mmWave) have emerged as pivotal technologies for 6G networks. However, the narrow nature of mmWave beams requires precise alignments that typically necessitate large training overhead. This overhead can be reduced by incorporating the position information with beam adjustments. This letter proposes a lightweight autorencoder (LAE) model that addresses the position-assisted beam prediction problem while significantly reducing computational complexity compared to the conventional baseline method, i.e., deep fully connected neural network. The proposed LAE is designed as a three-layer undercomplete network to exploit its dimensionality reduction capabilities and thereby mitigate the computational requirements of the trained model. Simulation results show that the proposed model achieves a similar beam prediction accuracy to the baseline with an 83% complexity reduction.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.