Papers
Topics
Authors
Recent
2000 character limit reached

TimePre: Bridging Accuracy, Efficiency, and Stability in Probabilistic Time-Series Forecasting (2511.18539v1)

Published 23 Nov 2025 in cs.LG and cs.CV

Abstract: Probabilistic Time-Series Forecasting (PTSF) is critical for uncertainty-aware decision making, but existing generative models, such as diffusion-based approaches, are computationally prohibitive due to expensive iterative sampling. Non-sampling frameworks like Multiple Choice Learning (MCL) offer an efficient alternative, but suffer from severe training instability and hypothesis collapse, which has historically hindered their performance. This problem is dramatically exacerbated when attempting to combine them with modern, efficient MLP-based backbones. To resolve this fundamental incompatibility, we propose TimePre, a novel framework that successfully unifies the efficiency of MLP-based models with the distributional flexibility of the MCL paradigm. The core of our solution is Stabilized Instance Normalization (SIN), a novel normalization layer that explicitly remedies this incompatibility. SIN stabilizes the hybrid architecture by correcting channel-wise statistical shifts, definitively resolving the catastrophic hypothesis collapse. Extensive experiments on six benchmark datasets demonstrate that TimePre achieves new state-of-the-art accuracy on key probabilistic metrics. Critically, TimePre achieves inference speeds orders of magnitude faster than sampling-based models and, unlike prior MCL work, demonstrates stable performance scaling. It thus bridges the long-standing gap between accuracy, efficiency, and stability in probabilistic forecasting.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.