End-to-End Automated Logging via Multi-Agent Framework (2511.18528v1)
Abstract: Software logging is critical for system observability, yet developers face a dual crisis of costly overlogging and risky underlogging. Existing automated logging tools often overlook the fundamental whether-to-log decision and struggle with the composite nature of logging. In this paper, we propose Autologger, a novel hybrid framework that addresses the complete the end-to-end logging pipeline. Autologger first employs a fine-tuned classifier, the Judger, to accurately determine if a method requires new logging statements. If logging is needed, a multi-agent system is activated. The system includes specialized agents: a Locator dedicated to determining where to log, and a Generator focused on what to log. These agents work together, utilizing our designed program analysis and retrieval tools. We evaluate Autologger on a large corpus from three mature open-source projects against state-of-the-art baselines. Our results show that Autologger achieves 96.63\% F1-score on the crucial whether-to-log decision. In an end-to-end setting, Autologger improves the overall quality of generated logging statements by 16.13\% over the strongest baseline, as measured by an LLM-as-a-judge score. We also demonstrate that our framework is generalizable, consistently boosting the performance of various backbone LLMs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.