Robust Posterior Diffusion-based Sampling via Adaptive Guidance Scale (2511.18471v1)
Abstract: Diffusion models have recently emerged as powerful generative priors for solving inverse problems, achieving state-of-the-art results across various imaging tasks. A central challenge in this setting lies in balancing the contribution of the prior with the data fidelity term: overly aggressive likelihood updates may introduce artifacts, while conservative updates can slow convergence or yield suboptimal reconstructions. In this work, we propose an adaptive likelihood step-size strategy to guide the diffusion process for inverse-problem formulations. Specifically, we develop an observation-dependent weighting scheme based on the agreement between two different approximations of the intractable intermediate likelihood gradients, that adapts naturally to the diffusion schedule, time re-spacing, and injected stochasticity. The resulting approach, Adaptive Posterior diffusion Sampling (AdaPS), is hyperparameter-free and improves reconstruction quality across diverse imaging tasks - including super-resolution, Gaussian deblurring, and motion deblurring - on CelebA-HQ and ImageNet-256 validation sets. AdaPS consistently surpasses existing diffusion-based baselines in perceptual quality with minimal or no loss in distortion, without any task-specific tuning. Extensive ablation studies further demonstrate its robustness to the number of diffusion steps, observation noise levels, and varying stochasticity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.