LLMs as Firmware Experts: A Runtime-Grown Tree-of-Agents Framework (2511.18438v1)
Abstract: LLMs and their agent systems have recently demonstrated strong potential in automating code reasoning and vulnerability detection. However, when applied to large-scale firmware, their performance degrades due to the binary nature of firmware, complex dependency structures, and heterogeneous components. To address this challenge, this paper presents FIRMHIVE, a recursive agent hive that enables LLMs to act as autonomous firmware security analysts. FIRMHIVE introduces two key mechanisms: (1) transforming delegation into a per-agent, executable primitive and (2) constructing a runtime Tree of Agents (ToA) for decentralized coordination. We evaluate FIRMHIVE using real-world firmware images obtained from publicly available datasets, covering five representative security analysis tasks. Compared with existing LLM-agent baselines, FIRMHIVE performs deeper (about 16x more reasoning steps) and broader (about 2.3x more files inspected) cross-file exploration, resulting in about 5.6x more alerts per firmware. Compared to state-of-the-art (SOTA) security tools, FIRMHIVE identifies about 1.5x more vulnerabilities (1,802 total) and achieves 71% precision, representing significant improvements in both yield and fidelity.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.