KGpipe: Generation and Evaluation of Pipelines for Data Integration into Knowledge Graphs (2511.18364v1)
Abstract: Building high-quality knowledge graphs (KGs) from diverse sources requires combining methods for information extraction, data transformation, ontology mapping, entity matching, and data fusion. Numerous methods and tools exist for each of these tasks, but support for combining them into reproducible and effective end-to-end pipelines is still lacking. We present a new framework, KGpipe for defining and executing integration pipelines that can combine existing tools or LLM functionality. To evaluate different pipelines and the resulting KGs, we propose a benchmark to integrate heterogeneous data of different formats (RDF, JSON, text) into a seed KG. We demonstrate the flexibility of KGpipe by running and comparatively evaluating several pipelines integrating sources of the same or different formats using selected performance and quality metrics.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.