Toward an AI-Native Internet: Rethinking the Web Architecture for Semantic Retrieval (2511.18354v1)
Abstract: The rise of Generative AI Search is fundamentally transforming how users and intelligent systems interact with the Internet. LLMs increasingly act as intermediaries between humans and web information. Yet the web remains optimized for human browsing rather than AI-driven semantic retrieval, resulting in wasted network bandwidth, lower information quality, and unnecessary complexity for developers. We introduce the concept of an AI-Native Internet, a web architecture in which servers expose semantically relevant information chunks rather than full documents, supported by a Web-native semantic resolver that allows AI applications to discover relevant information sources before retrieving fine-grained chunks. Through motivational experiments, we quantify the inefficiencies of current HTML-based retrieval, and outline architectural directions and open challenges for evolving today's document-centric web into an AI-oriented substrate that better supports semantic access to web content.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.