"AGI" team at SHROOM-CAP: Data-Centric Approach to Multilingual Hallucination Detection using XLM-RoBERTa (2511.18301v1)
Abstract: The detection of hallucinations in multilingual scientific text generated by LLMs presents significant challenges for reliable AI systems. This paper describes our submission to the SHROOM-CAP 2025 shared task on scientific hallucination detection across 9 languages. Unlike most approaches that focus primarily on model architecture, we adopted a data-centric strategy that addressed the critical issue of training data scarcity and imbalance. We unify and balance five existing datasets to create a comprehensive training corpus of 124,821 samples (50% correct, 50% hallucinated), representing a 172x increase over the original SHROOM training data. Our approach fine-tuned XLM-RoBERTa-Large with 560 million parameters on this enhanced dataset, achieves competitive performance across all languages, including \textbf{2nd place in Gujarati} (zero-shot language) with Factuality F1 of 0.5107, and rankings between 4th-6th place across the remaining 8 languages. Our results demonstrate that systematic data curation can significantly outperform architectural innovations alone, particularly for low-resource languages in zero-shot settings.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.