Papers
Topics
Authors
Recent
2000 character limit reached

GROOT: Graph Edge Re-growth and Partitioning for the Verification of Large Designs in Logic Synthesis (2511.18297v1)

Published 23 Nov 2025 in cs.LG

Abstract: Traditional verification methods in chip design are highly time-consuming and computationally demanding, especially for large scale circuits. Graph neural networks (GNNs) have gained popularity as a potential solution to improve verification efficiency. However, there lacks a joint framework that considers all chip design domain knowledge, graph theory, and GPU kernel designs. To address this challenge, we introduce GROOT, an algorithm and system co-design framework that contains chip design domain knowledge and redesigned GPU kernels, to improve verification efficiency. More specifically, we create node features utilizing the circuit node types and the polarity of the connections between the input edges to nodes in And-Inverter Graphs (AIGs). We utilize a graph partitioning algorithm to divide the large graphs into smaller sub-graphs for fast GPU processing and develop a graph edge re-growth algorithm to recover verification accuracy. We carefully profile the EDA graph workloads and observe the uniqueness of their polarized distribution of high degree (HD) nodes and low degree (LD) nodes. We redesign two GPU kernels (HD-kernel and LD-kernel), to fit the EDA graph learning workload on a single GPU. We compare the results with state-of-the-art (SOTA) methods: GAMORA, a GNN-based approach, and the traditional ABC framework. Results show that GROOT achieves a significant reduction in memory footprint (59.38 %), with high accuracy (99.96%) for a very large CSA multiplier, i.e. 1,024 bits with a batch size of 16, which consists of 134,103,040 nodes and 268,140,544 edges. We compare GROOT with GPU-based GPU Kernel designs SOTAs such as cuSPARSE, MergePath-SpMM, and GNNAdvisor. We achieve up to 1.104x, 5.796x, and 1.469x improvement in runtime, respectively.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.