Papers
Topics
Authors
Recent
2000 character limit reached

ADF-LoRA: Alternating Low-Rank Aggregation for Decentralized Federated Fine-Tuning (2511.18291v1)

Published 23 Nov 2025 in cs.LG and cs.DC

Abstract: This paper revisits alternating low-rank updates for federated fine-tuning and examines their behavior in decentralized federated learning (DFL). While alternating the LoRA matrices has been shown to stabilize aggregation in centralized FL, extending this mechanism to decentralized, peer-to-peer communication introduces new challenges due to phase-state mismatch and block-wise divergence across clients. We introduce ADF-LoRA, which synchronizes the update of only one low-rank matrix per round and mixes both matrices to maintain more consistent parameter states under decentralized propagation. This design preserves the cross-term suppression effect of alternating updates while improving stability in serverless topologies. We provide a convergence analysis under standard smoothness assumptions and evaluate ADF-LoRA on multiple GLUE tasks. Experiments show that ADF-LoRA achieves faster and smoother convergence and delivers the highest average accuracy across tasks, outperforming existing LoRA variants in decentralized FL by a consistent margin.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.