Papers
Topics
Authors
Recent
2000 character limit reached

From Tables to Signals: Revealing Spectral Adaptivity in TabPFN (2511.18278v1)

Published 23 Nov 2025 in cs.LG and cs.CV

Abstract: Task-agnostic tabular foundation models such as TabPFN have achieved impressive performance on tabular learning tasks, yet the origins of their inductive biases remain poorly understood. In this work, we study TabPFN through the lens of signal reconstruction and provide the first frequency-based analysis of its in-context learning behavior. We show that TabPFN possesses a broader effective frequency capacity than standard ReLU-MLPs, even without hyperparameter tuning. Moreover, unlike MLPs whose spectra evolve primarily over training epochs, we find that TabPFN's spectral capacity adapts directly to the number of samples provided in-context, a phenomenon we term Spectral Adaptivity. We further demonstrate that positional encoding modulates TabPFN's frequency response, mirroring classical results in implicit neural representations. Finally, we show that these properties enable TabPFN to perform training-free and hyperparameter-free image denoising, illustrating its potential as a task-agnostic implicit model. Our analysis provides new insight into the structure and inductive biases of tabular foundation models and highlights their promise for broader signal reconstruction tasks.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.