Carbon-Aware Intrusion Detection: A Comparative Study of Supervised and Unsupervised DRL for Sustainable IoT Edge Gateways (2511.18240v1)
Abstract: The rapid expansion of the Internet of Things (IoT) has intensified cybersecurity challenges, particularly in mitigating Distributed Denial-of-Service (DDoS) attacks at the network edge. Traditional Intrusion Detection Systems (IDSs) face significant limitations, including poor adaptability to evolving and zero-day attacks, reliance on static signatures and labeled datasets, and inefficiency on resource-constrained edge gateways. Moreover, most existing DRL-based IDS studies overlook sustainability factors such as energy efficiency and carbon impact. To address these challenges, this paper proposes two novel Deep Reinforcement Learning (DRL)-based IDS: DeepEdgeIDS, an unsupervised Autoencoder-DRL hybrid, and AutoDRL-IDS, a supervised LSTM-DRL model. Both DRL-based IDS are validated through theoretical analysis and experimental evaluation on edge gateways. Results demonstrate that AutoDRL-IDS achieves 94% detection accuracy using labeled data, while DeepEdgeIDS attains 98% accuracy and adaptability without labels. Distinctly, this study introduces a carbon-aware, multi-objective reward function optimized for sustainable and real-time IDS operations in dynamic IoT networks.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.