Papers
Topics
Authors
Recent
2000 character limit reached

APULSE: A Scalable Hybrid Algorithm for the RCSPP on Large-Scale Dense Graphs (2511.18236v1)

Published 23 Nov 2025 in cs.RO and eess.SY

Abstract: The resource-constrained shortest path problem (RCSPP) is a fundamental NP-hard optimization challenge with broad applications, from network routing to autonomous navigation. This problem involves finding a path that minimizes a primary cost subject to a budget on a secondary resource. While various RCSPP solvers exist, they often face critical scalability limitations when applied to the large, dense graphs characteristic of complex, real-world scenarios, making them impractical for time-critical planning. This challenge is particularly acute in domains like mission planning for unmanned ground vehicles (UGVs), which demand solutions on large-scale terrain graphs. This paper introduces APULSE, a hybrid label-setting algorithm designed to efficiently solve the RCSPP on such challenging graphs. APULSE integrates a best-first search guided by an A* heuristic with aggressive, Pulse-style pruning mechanisms and a time-bucketing strategy for effective state-space reduction. A computational study, using a large-scale UGV planning scenario, benchmarks APULSE against state-of-the-art algorithms. The results demonstrate that APULSE consistently finds near-optimal solutions while being orders of magnitude faster and more robust, particularly on large problem instances where competing methods fail. This superior scalability establishes APULSE as an effective solution for RCSPP in complex, large-scale environments, enabling capabilities such as interactive decision support and dynamic replanning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.