Towards a General Framework for HTN Modeling with LLMs (2511.18165v1)
Abstract: The use of LLMs for generating Automated Planning (AP) models has been widely explored; however, their application to Hierarchical Planning (HP) is still far from reaching the level of sophistication observed in non-hierarchical architectures. In this work, we try to address this gap. We present two main contributions. First, we propose L2HP, an extension of L2P (a library to LLM-driven PDDL models generation) that support HP model generation and follows a design philosophy of generality and extensibility. Second, we apply our framework to perform experiments where we compare the modeling capabilities of LLMs for AP and HP. On the PlanBench dataset, results show that parsing success is limited but comparable in both settings (around 36\%), while syntactic validity is substantially lower in the hierarchical case (1\% vs. 20\% of instances). These findings underscore the unique challenges HP presents for LLMs, highlighting the need for further research to improve the quality of generated HP models.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.