Papers
Topics
Authors
Recent
2000 character limit reached

Vector Arithmetic in Concept and Token Subspaces (2511.18162v1)

Published 22 Nov 2025 in cs.CL

Abstract: In order to predict the next token, LLMs must represent semantic and surface-level information about the current word. Previous work identified two types of attention heads that disentangle this information: (i) Concept induction heads, which copy word meanings, and (ii) Token induction heads, which copy literal token representations (Feucht et al., 2025). We show that these heads can be used to identify subspaces of model activations that exhibit coherent semantic structure in Llama-2-7b. Specifically, when we transform hidden states using the attention weights of concept heads, we are able to more accurately perform parallelogram arithmetic (Mikolov et al., 2013) on the resulting hidden states, e.g., showing that "Athens" - "Greece" + "China" = "Beijing". This transformation allows for much higher nearest-neighbor accuracy (80%) than direct use of raw hidden states (47%). Analogously, we show that token heads allow for transformations that reveal surface-level word information in hidden states, allowing for operations like "coding" - "code" + "dance" = "dancing".

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.