Papers
Topics
Authors
Recent
2000 character limit reached

Hierarchical Linkage Clustering Beyond Binary Trees and Ultrametrics (2511.18056v1)

Published 22 Nov 2025 in cs.LG, stat.ME, and stat.ML

Abstract: Hierarchical clustering seeks to uncover nested structures in data by constructing a tree of clusters, where deeper levels reveal finer-grained relationships. Traditional methods, including linkage approaches, face three major limitations: (i) they always return a hierarchy, even if none exists, (ii) they are restricted to binary trees, even if the true hierarchy is non-binary, and (iii) they are highly sensitive to the choice of linkage function. In this paper, we address these issues by introducing the notion of a valid hierarchy and defining a partial order over the set of valid hierarchies. We prove the existence of a finest valid hierarchy, that is, the hierarchy that encodes the maximum information consistent with the similarity structure of the data set. In particular, the finest valid hierarchy is not constrained to binary structures and, when no hierarchical relationships exist, collapses to a star tree. We propose a simple two-step algorithm that first constructs a binary tree via a linkage method and then prunes it to enforce validity. We establish necessary and sufficient conditions on the linkage function under which this procedure exactly recovers the finest valid hierarchy, and we show that all linkage functions satisfying these conditions yield the same hierarchy after pruning. Notably, classical linkage rules such as single, complete, and average satisfy these conditions, whereas Ward's linkage fails to do so.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.