Papers
Topics
Authors
Recent
2000 character limit reached

HyM-UNet: Synergizing Local Texture and Global Context via Hybrid CNN-Mamba Architecture for Medical Image Segmentation (2511.17988v1)

Published 22 Nov 2025 in cs.CV and cs.IR

Abstract: Accurate organ and lesion segmentation is a critical prerequisite for computer-aided diagnosis. Convolutional Neural Networks (CNNs), constrained by their local receptive fields, often struggle to capture complex global anatomical structures. To tackle this challenge, this paper proposes a novel hybrid architecture, HyM-UNet, designed to synergize the local feature extraction capabilities of CNNs with the efficient global modeling capabilities of Mamba. Specifically, we design a Hierarchical Encoder that utilizes convolutional modules in the shallow stages to preserve high-frequency texture details, while introducing Visual Mamba modules in the deep stages to capture long-range semantic dependencies with linear complexity. To bridge the semantic gap between the encoder and the decoder, we propose a Mamba-Guided Fusion Skip Connection (MGF-Skip). This module leverages deep semantic features as gating signals to dynamically suppress background noise within shallow features, thereby enhancing the perception of ambiguous boundaries. We conduct extensive experiments on public benchmark dataset ISIC 2018. The results demonstrate that HyM-UNet significantly outperforms existing state-of-the-art methods in terms of Dice coefficient and IoU, while maintaining lower parameter counts and inference latency. This validates the effectiveness and robustness of the proposed method in handling medical segmentation tasks characterized by complex shapes and scale variations.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.