VITAL: Vision-Encoder-centered Pre-training for LMMs in Visual Quality Assessment (2511.17962v1)
Abstract: Developing a robust visual quality assessment (VQualA) large multi-modal model (LMM) requires achieving versatility, powerfulness, and transferability. However, existing VQualA LMMs typically focus on a single task and rely on full-parameter fine-tuning, which makes them prone to overfitting on specific modalities or task types, thereby limiting their generalization capacity and transferability. To address this, we propose a vision-encoder-centered generative pre-training pipeline and develop the VITAL-Series LMMs. (1) We adopt a machine-executed annotation-scrutiny paradigm, constructing over 4.5M vision-language (VL) pairs-the largest VQualA training dataset to date. (2) We employ a multi-task training workflow that simultaneously enhances the model's quantitative scoring precision and strengthens its capability for quality interpretation across both image and video modalities. (3) Building upon the vision encoder, we realize an efficient model zoo extension: the model zoo exhibits strong zero-shot performance, and each paired decoder requires only a swift warm-up using less than 1/1000 of the pre-training data to achieve performance comparable to the fully trained counterpart. Overall, our work lays a cornerstone for advancing toward the foundation LMM for VQualA.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.