Measuring the Impact of Lexical Training Data Coverage on Hallucination Detection in Large Language Models (2511.17946v1)
Abstract: Hallucination in LLMs is a fundamental challenge, particularly in open-domain question answering. Prior work attempts to detect hallucination with model-internal signals such as token-level entropy or generation consistency, while the connection between pretraining data exposure and hallucination is underexplored. Existing studies show that LLMs underperform on long-tail knowledge, i.e., the accuracy of the generated answer drops for the ground-truth entities that are rare in pretraining. However, examining whether data coverage itself can serve as a detection signal is overlooked. We propose a complementary question: Does lexical training-data coverage of the question and/or generated answer provide additional signal for hallucination detection? To investigate this, we construct scalable suffix arrays over RedPajama's 1.3-trillion-token pretraining corpus to retrieve $n$-gram statistics for both prompts and model generations. We evaluate their effectiveness for hallucination detection across three QA benchmarks. Our observations show that while occurrence-based features are weak predictors when used alone, they yield modest gains when combined with log-probabilities, particularly on datasets with higher intrinsic model uncertainty. These findings suggest that lexical coverage features provide a complementary signal for hallucination detection. All code and suffix-array infrastructure are provided at https://github.com/WWWonderer/ostd.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.