Papers
Topics
Authors
Recent
2000 character limit reached

When Better Teachers Don't Make Better Students: Revisiting Knowledge Distillation for CLIP Models in VQA (2511.17886v1)

Published 22 Nov 2025 in cs.CV and cs.CL

Abstract: Vision-LLMs (VLMs) have achieved remarkable success across multimodal tasks, yet their substantial computational demands hinder efficient deployment. Knowledge distillation (KD) has emerged as a powerful approach for building lightweight but competitive models, with strong evidence from both language and vision domains. However, its application to VLMs, particularly CLIP-style models, remains limited, often constrained to small-scale teachers and narrow evaluation tasks such as classification or retrieval. In this work, we present the first systematic study of distillation across a range of CLIP-style teacher models, ranging from standard baselines to large-scale state-of-the-art models. Contrary to trends observed in NLP and vision, we find that stronger teachers do not consistently yield better students; in fact, existing distillation frameworks often fail to scale, leading to degraded performance in downstream multimodal tasks such as visual question answering. Our findings challenge prevailing assumptions in KD and point toward new directions for designing parameter-efficient multimodal models.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.