Papers
Topics
Authors
Recent
2000 character limit reached

Towards Open-Ended Visual Scientific Discovery with Sparse Autoencoders (2511.17735v1)

Published 21 Nov 2025 in cs.CV

Abstract: Scientific archives now contain hundreds of petabytes of data across genomics, ecology, climate, and molecular biology that could reveal undiscovered patterns if systematically analyzed at scale. Large-scale, weakly-supervised datasets in language and vision have driven the development of foundation models whose internal representations encode structure (patterns, co-occurrences and statistical regularities) beyond their training objectives. Most existing methods extract structure only for pre-specified targets; they excel at confirmation but do not support open-ended discovery of unknown patterns. We ask whether sparse autoencoders (SAEs) can enable open-ended feature discovery from foundation model representations. We evaluate this question in controlled rediscovery studies, where the learned SAE features are tested for alignment with semantic concepts on a standard segmentation benchmark and compared against strong label-free alternatives on concept-alignment metrics. Applied to ecological imagery, the same procedure surfaces fine-grained anatomical structure without access to segmentation or part labels, providing a scientific case study with ground-truth validation. While our experiments focus on vision with an ecology case study, the method is domain-agnostic and applicable to models in other sciences (e.g., proteins, genomics, weather). Our results indicate that sparse decomposition provides a practical instrument for exploring what scientific foundation models have learned, an important prerequisite for moving from confirmation to genuine discovery.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 6 tweets with 165 likes about this paper.