Papers
Topics
Authors
Recent
2000 character limit reached

Dialogue Diplomats: An End-to-End Multi-Agent Reinforcement Learning System for Automated Conflict Resolution and Consensus Building (2511.17654v1)

Published 20 Nov 2025 in cs.MA and cs.AI

Abstract: Conflict resolution and consensus building represent critical challenges in multi-agent systems, negotiations, and collaborative decision-making processes. This paper introduces Dialogue Diplomats, a novel end-to-end multi-agent reinforcement learning (MARL) framework designed for automated conflict resolution and consensus building in complex, dynamic environments. The proposed system integrates advanced deep reinforcement learning architectures with dialogue-based negotiation protocols, enabling autonomous agents to engage in sophisticated conflict resolution through iterative communication and strategic adaptation. We present three primary contributions: first, a novel Hierarchical Consensus Network (HCN) architecture that combines attention mechanisms with graph neural networks to model inter-agent dependencies and conflict dynamics. second, a Progressive Negotiation Protocol (PNP) that structures multi-round dialogue interactions with adaptive concession strategies; and third, a Context-Aware Reward Shaping mechanism that balances individual agent objectives with collective consensus goals.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.