Papers
Topics
Authors
Recent
2000 character limit reached

Self-Supervised Learning by Curvature Alignment (2511.17426v1)

Published 21 Nov 2025 in cs.LG, cs.CV, and stat.ML

Abstract: Self-supervised learning (SSL) has recently advanced through non-contrastive methods that couple an invariance term with variance, covariance, or redundancy-reduction penalties. While such objectives shape first- and second-order statistics of the representation, they largely ignore the local geometry of the underlying data manifold. In this paper, we introduce CurvSSL, a curvature-regularized self-supervised learning framework, and its RKHS extension, kernel CurvSSL. Our approach retains a standard two-view encoder-projector architecture with a Barlow Twins-style redundancy-reduction loss on projected features, but augments it with a curvature-based regularizer. Each embedding is treated as a vertex whose $k$ nearest neighbors define a discrete curvature score via cosine interactions on the unit hypersphere; in the kernel variant, curvature is computed from a normalized local Gram matrix in an RKHS. These scores are aligned and decorrelated across augmentations by a Barlow-style loss on a curvature-derived matrix, encouraging both view invariance and consistency of local manifold bending. Experiments on MNIST and CIFAR-10 datasets with a ResNet-18 backbone show that curvature-regularized SSL yields competitive or improved linear evaluation performance compared to Barlow Twins and VICReg. Our results indicate that explicitly shaping local geometry is a simple and effective complement to purely statistical SSL regularizers.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.