Real Noise Decoupling for Hyperspectral Image Denoising (2511.17196v1)
Abstract: Hyperspectral image (HSI) denoising is a crucial step in enhancing the quality of HSIs. Noise modeling methods can fit noise distributions to generate synthetic HSIs to train denoising networks. However, the noise in captured HSIs is usually complex and difficult to model accurately, which significantly limits the effectiveness of these approaches. In this paper, we propose a multi-stage noise-decoupling framework that decomposes complex noise into explicitly modeled and implicitly modeled components. This decoupling reduces the complexity of noise and enhances the learnability of HSI denoising methods when applied to real paired data. Specifically, for explicitly modeled noise, we utilize an existing noise model to generate paired data for pre-training a denoising network, equipping it with prior knowledge to handle the explicitly modeled noise effectively. For implicitly modeled noise, we introduce a high-frequency wavelet guided network. Leveraging the prior knowledge from the pre-trained module, this network adaptively extracts high-frequency features to target and remove the implicitly modeled noise from real paired HSIs. Furthermore, to effectively eliminate all noise components and mitigate error accumulation across stages, a multi-stage learning strategy, comprising separate pre-training and joint fine-tuning, is employed to optimize the entire framework. Extensive experiments on public and our captured datasets demonstrate that our proposed framework outperforms state-of-the-art methods, effectively handling complex real-world noise and significantly enhancing HSI quality.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.