Papers
Topics
Authors
Recent
2000 character limit reached

AutoGraphAD: A novel approach using Variational Graph Autoencoders for anomalous network flow detection (2511.17113v1)

Published 21 Nov 2025 in cs.CR, cs.AI, and cs.LG

Abstract: Network Intrusion Detection Systems (NIDS) are essential tools for detecting network attacks and intrusions. While extensive research has explored the use of supervised Machine Learning for attack detection and characterisation, these methods require accurately labelled datasets, which are very costly to obtain. Moreover, existing public datasets have limited and/or outdated attacks, and many of them suffer from mislabelled data. To reduce the reliance on labelled data, we propose AutoGraphAD, a novel unsupervised anomaly detection approach based on a Heterogeneous Variational Graph Autoencoder. AutoGraphAD operates on heterogeneous graphs, made from connection and IP nodes that capture network activity within a time window. The model is trained using unsupervised and contrastive learning, without relying on any labelled data. The reconstruction, structural loss, and KL divergence are then weighted and combined in an anomaly score that is then used for anomaly detection. Overall, AutoGraphAD yields the same, and in some cases better, results than previous unsupervised approaches, such as Anomal-E, but without requiring costly downstream anomaly detectors. As a result, AutoGraphAD achieves around 1.18 orders of magnitude faster training and 1.03 orders of magnitude faster inference, which represents a significant advantage for operational deployment.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.