Papers
Topics
Authors
Recent
2000 character limit reached

DAPS++: Rethinking Diffusion Inverse Problems with Decoupled Posterior Annealing (2511.17038v1)

Published 21 Nov 2025 in cs.AI and stat.ML

Abstract: From a Bayesian perspective, score-based diffusion solves inverse problems through joint inference, embedding the likelihood with the prior to guide the sampling process. However, this formulation fails to explain its practical behavior: the prior offers limited guidance, while reconstruction is largely driven by the measurement-consistency term, leading to an inference process that is effectively decoupled from the diffusion dynamics. To clarify this structure, we reinterpret the role of diffusion in inverse problem solving as an initialization stage within an expectation--maximization (EM)--style framework, where the diffusion stage and the data-driven refinement are fully decoupled. We introduce \textbf{DAPS++}, which allows the likelihood term to guide inference more directly while maintaining numerical stability and providing insight into why unified diffusion trajectories remain effective in practice. By requiring fewer function evaluations (NFEs) and measurement-optimization steps, \textbf{DAPS++} achieves high computational efficiency and robust reconstruction performance across diverse image restoration tasks.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.