Papers
Topics
Authors
Recent
2000 character limit reached

Optimizing PyTorch Inference with LLM-Based Multi-Agent Systems (2511.16964v1)

Published 21 Nov 2025 in cs.MA, cs.AI, and cs.DC

Abstract: Maximizing performance on available GPU hardware is an ongoing challenge for modern AI inference systems. Traditional approaches include writing custom GPU kernels and using specialized model compilers to tune high-level code for specific GPU targets. Recent work shows that LLM-based multi-agent systems can effectively perform such tuning, often outperforming existing compilers and eliminating the need for manual kernel development. However, the dynamics of multi-agent systems for this task remain unexplored. In this work, we present a logical framework for comparing multi-agent PyTorch optimization systems. Our evaluation shows that exploit-heavy strategies perform best when paired with error-fixing agents, and that performance correlates with the granularity of optimization steps. The best implementation achieves an average 2.88x speedup on an H100 GPU across diverse tasks in KernelBench, a benchmark suite covering a range of machine learning architectures in PyTorch.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 2 likes about this paper.