Papers
Topics
Authors
Recent
2000 character limit reached

Rethinking Diffusion Model-Based Video Super-Resolution: Leveraging Dense Guidance from Aligned Features (2511.16928v1)

Published 21 Nov 2025 in cs.CV

Abstract: Diffusion model (DM) based Video Super-Resolution (VSR) approaches achieve impressive perceptual quality. However, they suffer from error accumulation, spatial artifacts, and a trade-off between perceptual quality and fidelity, primarily caused by inaccurate alignment and insufficient compensation between video frames. In this paper, within the DM-based VSR pipeline, we revisit the role of alignment and compensation between adjacent video frames and reveal two crucial observations: (a) the feature domain is better suited than the pixel domain for information compensation due to its stronger spatial and temporal correlations, and (b) warping at an upscaled resolution better preserves high-frequency information, but this benefit is not necessarily monotonic. Therefore, we propose a novel Densely Guided diffusion model with Aligned Features for Video Super-Resolution (DGAF-VSR), with an Optical Guided Warping Module (OGWM) to maintain high-frequency details in the aligned features and a Feature-wise Temporal Condition Module (FTCM) to deliver dense guidance in the feature domain. Extensive experiments on synthetic and real-world datasets demonstrate that DGAF-VSR surpasses state-of-the-art methods in key aspects of VSR, including perceptual quality (35.82\% DISTS reduction), fidelity (0.20 dB PSNR gain), and temporal consistency (30.37\% tLPIPS reduction).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.