Papers
Topics
Authors
Recent
2000 character limit reached

Glass Surface Detection: Leveraging Reflection Dynamics in Flash/No-flash Imagery

Published 21 Nov 2025 in cs.CV | (2511.16887v1)

Abstract: Glass surfaces are ubiquitous in daily life, typically appearing colorless, transparent, and lacking distinctive features. These characteristics make glass surface detection a challenging computer vision task. Existing glass surface detection methods always rely on boundary cues (e.g., window and door frames) or reflection cues to locate glass surfaces, but they fail to fully exploit the intrinsic properties of the glass itself for accurate localization. We observed that in most real-world scenes, the illumination intensity in front of the glass surface differs from that behind it, which results in variations in the reflections visible on the glass surface. Specifically, when standing on the brighter side of the glass and applying a flash towards the darker side, existing reflections on the glass surface tend to disappear. Conversely, while standing on the darker side and applying a flash towards the brighter side, distinct reflections will appear on the glass surface. Based on this phenomenon, we propose NFGlassNet, a novel method for glass surface detection that leverages the reflection dynamics present in flash/no-flash imagery. Specifically, we propose a Reflection Contrast Mining Module (RCMM) for extracting reflections, and a Reflection Guided Attention Module (RGAM) for fusing features from reflection and glass surface for accurate glass surface detection. For learning our network, we also construct a dataset consisting of 3.3K no-flash and flash image pairs captured from various scenes with corresponding ground truth annotations. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods. Our code, model, and dataset will be available upon acceptance of the manuscript.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.