Fermions and Supersymmetry in Neural Network Field Theories (2511.16741v1)
Abstract: We introduce fermionic neural network field theories via Grassmann-valued neural networks. Free theories are obtained by a generalization of the Central Limit Theorem to Grassmann variables. This enables the realization of the free Dirac spinor at infinite width and a four fermion interaction at finite width. Yukawa couplings are introduced by breaking the statistical independence of the output weights for the fermionic and bosonic fields. A large class of interacting supersymmetric quantum mechanics and field theory models are introduced by super-affine transformations on the input that realize a superspace formalism.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.