Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quasiparticle Variational Quantum Eigensolver

Published 20 Nov 2025 in cond-mat.str-el and quant-ph | (2511.16721v1)

Abstract: We propose a momentum-space based variational quantum eigensolver (VQE) framework for simulating quasiparticle excitations in interacting quantum many-body systems on near-term quantum devices. Leveraging translational invariance and other symmetries of the Hamiltonian, we reconstruct the momentum-resolved quasiparticle excitation spectrum through targeted simulation of low-lying excited states using VQE. We construct a translationally symmetric variational ansatz designed to evolve a free-fermion particle-hole excited state with definite momentum $q$ to an excited state of the interacting system at the same momentum, employing a fermionic fast Fourier transform (FFFT) circuit coupled to a Hamiltonian Variational Ansatz (HVA) circuit. Even though the particle number is not explicitly conserved in the variational ansatz, the correct quasiparticle state is reached by energetic optimization. We benchmark the performance of the proposed VQE implementation on the XXZ Hamiltonian, which maps onto the Tomonaga-Luttinger liquid in the fermionic representation. Our numerical results show that VQE can capture the low-lying excitation spectrum of the bosonic quasiparticle/two-spinon dispersion of this model at various interaction strengths. We estimate the renormalized velocity of the quasiparticles by calculating the slope of the dispersion near zero momentum using the VQE-optimized energies at different system sizes, and demonstrate that it closely matches theoretical results obtained from Bethe ansatz. Finally, we highlight extensions of our proposed VQE implementation to simulate quasiparticles in other interacting quantum many-body systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.