YOWO: You Only Walk Once to Jointly Map An Indoor Scene and Register Ceiling-mounted Cameras (2511.16521v1)
Abstract: Using ceiling-mounted cameras (CMCs) for indoor visual capturing opens up a wide range of applications. However, registering CMCs to the target scene layout presents a challenging task. While manual registration with specialized tools is inefficient and costly, automatic registration with visual localization may yield poor results when visual ambiguity exists. To alleviate these issues, we propose a novel solution for jointly mapping an indoor scene and registering CMCs to the scene layout. Our approach involves equipping a mobile agent with a head-mounted RGB-D camera to traverse the entire scene once and synchronize CMCs to capture this mobile agent. The egocentric videos generate world-coordinate agent trajectories and the scene layout, while the videos of CMCs provide pseudo-scale agent trajectories and CMC relative poses. By correlating all the trajectories with their corresponding timestamps, the CMC relative poses can be aligned to the world-coordinate scene layout. Based on this initialization, a factor graph is customized to enable the joint optimization of ego-camera poses, scene layout, and CMC poses. We also develop a new dataset, setting the first benchmark for collaborative scene mapping and CMC registration (https://sites.google.com/view/yowo/home). Experimental results indicate that our method not only effectively accomplishes two tasks within a unified framework, but also jointly enhances their performance. We thus provide a reliable tool to facilitate downstream position-aware applications.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.