Papers
Topics
Authors
Recent
2000 character limit reached

A Comparison Between Decision Transformers and Traditional Offline Reinforcement Learning Algorithms (2511.16475v1)

Published 20 Nov 2025 in cs.LG

Abstract: The field of Offline Reinforcement Learning (RL) aims to derive effective policies from pre-collected datasets without active environment interaction. While traditional offline RL algorithms like Conservative Q-Learning (CQL) and Implicit Q-Learning (IQL) have shown promise, they often face challenges in balancing exploration and exploitation, especially in environments with varying reward densities. The recently proposed Decision Transformer (DT) approach, which reframes offline RL as a sequence modelling problem, has demonstrated impressive results across various benchmarks. This paper presents a comparative study evaluating the performance of DT against traditional offline RL algorithms in dense and sparse reward settings for the ANT continous control environment. Our research investigates how these algorithms perform when faced with different reward structures, examining their ability to learn effective policies and generalize across varying levels of feedback. Through empirical analysis in the ANT environment, we found that DTs showed less sensitivity to varying reward density compared to other methods and particularly excelled with medium-expert datasets in sparse reward scenarios. In contrast, traditional value-based methods like IQL showed improved performance in dense reward settings with high-quality data, while CQL offered balanced performance across different data qualities. Additionally, DTs exhibited lower variance in performance but required significantly more computational resources compared to traditional approaches. These findings suggest that sequence modelling approaches may be more suitable for scenarios with uncertain reward structures or mixed-quality data, while value-based methods remain competitive in settings with dense rewards and high-quality demonstrations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube