Papers
Topics
Authors
Recent
2000 character limit reached

CylinderDepth: Cylindrical Spatial Attention for Multi-View Consistent Self-Supervised Surround Depth Estimation (2511.16428v1)

Published 20 Nov 2025 in cs.CV

Abstract: Self-supervised surround-view depth estimation enables dense, low-cost 3D perception with a 360° field of view from multiple minimally overlapping images. Yet, most existing methods suffer from depth estimates that are inconsistent between overlapping images. Addressing this limitation, we propose a novel geometry-guided method for calibrated, time-synchronized multi-camera rigs that predicts dense, metric, and cross-view-consistent depth. Given the intrinsic and relative orientation parameters, a first depth map is predicted per image and the so-derived 3D points from all images are projected onto a shared unit cylinder, establishing neighborhood relations across different images. This produces a 2D position map for every image, where each pixel is assigned its projected position on the cylinder. Based on these position maps, we apply an explicit, non-learned spatial attention that aggregates features among pixels across images according to their distances on the cylinder, to predict a final depth map per image. Evaluated on the DDAD and nuScenes datasets, our approach improves the consistency of depth estimates across images and the overall depth compared to state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: