Papers
Topics
Authors
Recent
2000 character limit reached

End-to-End Motion Capture from Rigid Body Markers with Geodesic Loss (2511.16418v1)

Published 20 Nov 2025 in cs.CV and cs.HC

Abstract: Marker-based optical motion capture (MoCap), while long regarded as the gold standard for accuracy, faces practical challenges, such as time-consuming preparation and marker identification ambiguity, due to its reliance on dense marker configurations, which fundamentally limit its scalability. To address this, we introduce a novel fundamental unit for MoCap, the Rigid Body Marker (RBM), which provides unambiguous 6-DoF data and drastically simplifies setup. Leveraging this new data modality, we develop a deep-learning-based regression model that directly estimates SMPL parameters under a geodesic loss. This end-to-end approach matches the performance of optimization-based methods while requiring over an order of magnitude less computation. Trained on synthesized data from the AMASS dataset, our end-to-end model achieves state-of-the-art accuracy in body pose estimation. Real-world data captured using a Vicon optical tracking system further demonstrates the practical viability of our approach. Overall, the results show that combining sparse 6-DoF RBM with a manifold-aware geodesic loss yields a practical and high-fidelity solution for real-time MoCap in graphics, virtual reality, and biomechanics.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.