Papers
Topics
Authors
Recent
2000 character limit reached

An Agent-Based Framework for the Automatic Validation of Mathematical Optimization Models (2511.16383v1)

Published 20 Nov 2025 in cs.AI and cs.SE

Abstract: Recently, using LLMs to generate optimization models from natural language descriptions has became increasingly popular. However, a major open question is how to validate that the generated models are correct and satisfy the requirements defined in the natural language description. In this work, we propose a novel agent-based method for automatic validation of optimization models that builds upon and extends methods from software testing to address optimization modeling . This method consists of several agents that initially generate a problem-level testing API, then generate tests utilizing this API, and, lastly, generate mutations specific to the optimization model (a well-known software testing technique assessing the fault detection power of the test suite). In this work, we detail this validation framework and show, through experiments, the high quality of validation provided by this agent ensemble in terms of the well-known software testing measure called mutation coverage.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.