Reasoning Meets Representation: Envisioning Neuro-Symbolic Wireless Foundation Models (2511.16369v1)
Abstract: Recent advances in Wireless Physical Layer Foundation Models (WPFMs) promise a new paradigm of universal Radio Frequency (RF) representations. However, these models inherit critical limitations found in deep learning such as the lack of explainability, robustness, adaptability, and verifiable compliance with physical and regulatory constraints. In addition, the vision for an AI-native 6G network demands a level of intelligence that is deeply embedded into the systems and is trustworthy. In this vision paper, we argue that the neuro-symbolic paradigm, which integrates data-driven neural networks with rule- and logic-based symbolic reasoning, is essential for bridging this gap. We envision a novel Neuro-Symbolic framework that integrates universal RF embeddings with symbolic knowledge graphs and differentiable logic layers. This hybrid approach enables models to learn from large datasets while reasoning over explicit domain knowledge, enabling trustworthy, generalizable, and efficient wireless AI that can meet the demands of future networks.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.